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Abstract—We present filtering methods for finding all sub-
graphs of a large multiplex network that are isomorphic to
a smaller template network. These methods are shown to be
effective on a set of synthetic transaction networks from the
DARPA Modeling Adversarial Activity (MAA) program. In some
cases, filtering allows us to identify and enumerate all possible
isomorphisms. We observe that in some of the MAA networks,
the number of subgraphs isomorphic to the template is orders
of magnitude larger than the size of the network.

I. INTRODUCTION

Graph theory and network science abstract complicated
structures into a collection of actors (called nodes) and the
links between them (called edges). Such a collection is referred
to as a graph or network. In the networks we consider, there
may be parallel edges: multiple edges with the same source
and destination nodes. Some networks, known as multiplex

networks [1], have two or more types of edges. Each type of
edge corresponds to a different channel. Multiplex networks
can be used to model systems found in a wide variety of
disciplines, such as social networks [2], ecological networks
[3], and neural networks [4].

We wish to solve the subgraph matching problem on
multiplex networks. That is, given two multiplex networks,
one typically much larger than the other, we look for all
isomorphisms between the smaller – referred to hereafter as
the template – and any subgraph of the larger, which we call
the background. We refer to any subgraph of the background
isomorphic to the template as a signal, and any node which
participates in at least one signal as a signal node. See Figure 1
for an example.

Note that signals are not necessarily induced subgraphs
of the background. Every edge in the template will have a
corresponding edge in the signal, but signal nodes may have
edges between them that do not correspond to edges in the
template. Also, a signal need not be unique: as the background
is often orders of magnitude larger than the template, there
may be many signals that are all isomorphic to the template.

This problem is of particular interest in the context of the
DARPA-led Modeling Adversarial Activity (MAA) program
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Figure 1: Given the template and background networks above,
the only signal is the induced subgraph consisting of nodes 1,
2, and 3.

[5] in which the goal is to “develop mathematical and com-
putational techniques for modeling adversarial activity for the
purpose of producing high-confidence indications and warn-
ings of efforts to acquire, fabricate, proliferate, and/or deploy
weapons of mass terror (WMTs).” Since “MAA assumes
that an adversary’s WMT activities will result in observable
transactions,” and “transaction data may very naturally be
modeled using graphs,” it can be seen that the problem of
detecting specific patterns of adversarial activity is related to
that of finding subgraph isomorphisms in transaction networks.

II. EXISTING WORK

Many subgraph matching algorithms (e.g. [6]–[11]) apply
a branch-and-bound approach to search the space of all sub-
graphs of the background. They grow a partial match between
the template and a subgraph of the background, adding one
or more nodes at a time to the partial match using various
heuristics and backtracking if a complete match becomes
impossible. What differentiates subgraph matching algorithms
of this type is how they decide what order to add nodes to the
partial match, and how they decide which background nodes
are considered to be candidates for each template node given a
partial match [12]. The latter process, that of finding candidate
background nodes for each template node, is called filtering.
It is also sometimes called pruning.

III. OUR CONTRIBUTION

We empirically show that a combination of three efficient
filtering methods is highly effective at reducing the number
of candidates per template node on several datasets from the
MAA program. On some of these datasets, our filters find all
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of the signal nodes, and the signals can be counted directly.
The number of signals can be quite large. For example, when
there exist template nodes with very few (one or two) edges
connecting them to the rest of the template, there tend to be
many signals which differ only in the corresponding nodes.

IV. WORKFLOW

For each node u in the template, we look for the set of nodes
in the background that correspond to u in at least one signal.
Initially, we consider every node in the background to be a
candidate for each node in the template. We then eliminate
candidates for nodes in the template by repeatedly applying
filters described in Section V until the sets of candidates
converge. Next, we remove nodes from the background which
are not candidates for any template node. Finally, we repeat
these steps until no further nodes are removed from the
background.

There are three possible outcomes:
• There are no candidates left for any node in the template.

In this case, we can be sure that no signal exists in the
background.

• The candidates converge to the nodes participating in
signals, allowing us to enumerate the corresponding iso-
morphisms using the approach discussed in Section VI.
See Section VII-B for an example.

• The candidates do not converge to a small enough set, so
we cannot determine how many signals exist, if any. See
Section VII-C for an example.

V. FILTERING

The goal of filtering is, for each template node u, to elim-
inate candidates in the background which cannot correspond
to u in any signal.

A. Node-Level Statistics Filter

If a node v in the background belongs to a signal, it must
correspond to some node u in the template. Then, certain
statistical properties of the node v must be larger than the
corresponding properties of u. For example, there must be at
least as many edges incident to v as there are on u. Therefore,
if there are fewer edges incident on v than there are on u, v
can be eliminated as a candidate for u. Statistics which can
be used to filter in this way include:

• In/out-degree
• Number of direct successors/predecessors
• Number of reciprocated edges
• Number of self-edges
Each of these statistics can be used separately for each

channel in the networks.
As an example, consider applying an in/out-degree filter to

the problem in Figure 1. Computing the in/out-degree in each
channel, shown in Table 1, we see that nodes 2, 3, 5, 6, and 7
have smaller in-degree in the solid green channel than node A,
and can therefore be ruled out as candidates for A. Similarly,
we can eliminate nodes 1, 3, 4, 5, 6, and 7 as candidates
for node B, and nodes 1, 2, 4, 5, and 7 as candidates for

node C. The remaining candidates for each template node are
summarized in Table 2.

Node A B C 1 2 3 4 5 6 7
Solid green
in-degree 2 0 0 2 0 0 2 1 0 0

Solid green
out-degree 0 2 0 0 2 1 1 1 0 0

Dashed blue
in-degree 0 0 2 0 0 2 0 1 3 0

Dashed blue
out-degree 0 2 0 0 3 0 0 1 0 2

Table 1: In/out-degree per channel for nodes in the template
and background shown in Figure 1.

Template node Candidates
A 1, 4
B 2

C 3, 6

Table 2: Candidates per template node for the problem shown
in Figure 1 after filtering on in/out-degree in each channel.

B. Topology Filter

If nodes v1 and v2 in the background belong to a signal in
which they correspond to nodes u1 and u2 in the template,
there must be at least as many edges in each channel between
v1 and v2 as there are between u1 and u2. Therefore, if
there are fewer edges in some channel between v1 and every
candidate for u2, v1 can be eliminated as a candidate for u1.
Likewise, if there are fewer edges in some channel between
v2 and every candidate for u1, v2 can be eliminated as a
candidate for u2.

Consider applying this filter to the problem in Figure 1,
supposing that initially the candidates are as shown in Table 2.
Since node 4 is a candidate for node A, we expect that it
should have at least two solid green edges coming from some
candidate for node B, which it does not. Therefore, node 4 can
be eliminated as a candidate of node A. Similarly, node 6 can
be eliminated as a candidate of node C, since it does not have
at least two dashed blue edges coming from any candidate of
node 2. Thus, once the topology filter has been applied, the
only candidates for nodes A, B, and C are nodes 1, 2, and
3 respectively.

C. Repeated Set Filter

This filter uses the fact that any isomorphism from the
template to a signal must be injective. A consequence of this is
that if there is a template node which has only one candidate,
that candidate can be eliminated from candidacy for every
other template node. More generally, if there is a set of k
template nodes, the union of whose candidates is a set also
of size k, then those candidates cannot be candidates for any
template node outside the set. We relax this latter condition
and instead impose that if a set of k template nodes each have

23980



exactly the same k candidates, those candidates are removed
from the candidates of all other template nodes.

As an example, consider the template and background
shown in Figure 2, with candidates as shown in the first two
columns of Table 3. Since two nodes in the template, B and
D, each have the same two candidates in the background, 2
and 4, those candidates are eliminated from candidacy for each
of the other template nodes, A, C, and E.

The repeated set filter is most important for templates which
contain structures that remain invariant under some permuta-
tions of labels e.g. a template containing several leaf nodes,
each of which is structurally interchangeable. We observe
this invariance across all instances in the dataset discussed
in Section VII-B.

Figure 2: An example of a template that contains nodes which
are structurally interchangeable. In particular, there is no way
to distinguish between nodes A and E or nodes B and D.
For illustrative purposes, the background is a duplicate of the
template with the labels changed.

Template Node Candidates without
repeated set filter

Candidates with
repeated set filter

A 1, 2, 4, 5 1, 5
B 2, 4 2, 4
C 3 3

D 2, 4 2, 4
E 1, 2, 4, 5 1, 5

Table 3: Candidates per template node for the problem shown
in Figure 2 after filtering on in/out-degree in each channel,
followed by filtering on topology. Results are shown with and
without additionally applying the repeated set filter.

VI. ISOMORPHISM COUNTING

After applying the filters described in Section V, we
frequently find that most template nodes have exactly one
candidate. However, a few template nodes still have multiple
candidates; we refer to these as unspecified nodes. To count the
number of isomorphisms, we must enumerate the valid ways
that candidates can be matched to these unspecified nodes,
determining a mapping from the template nodes to the nodes
of a signal. We call such a mapping a node-match.

When an edge exists between two unspecified nodes, we
have to enforce that a corresponding edge exists between
the two candidates we choose for them. As this makes
enumerating node-matches computationally complex, we start

by finding a set of unspecified nodes which, if specified,
would cause the remaining unspecified nodes to have no edges
between them. This set is called a node cover, and the smallest
such set is called the minimal node cover.

For example, in Figure 2, if we suppose all five template
nodes have multiple candidates, the minimal node cover would
be {C}. Since the minimal node cover is expensive to compute
in general, we settle for a small node cover [13].

Next, we iterate through all possible choices for candidates
of nodes in the node cover. For each choice, we reapply the
topology and repeated set filters so we can be sure that any
remaining candidates belong to signals. Since the remaining
unspecified nodes have no edges between them, it is much
simpler to enumerate the ways to choose their candidates. The
only constraint is that the same candidate cannot be chosen
for more than one node. The problem of choosing candidates
in this way is known as the alldifferent constraint satisfaction
problem [14].

Because networks may have parallel edges, a node-match
may correspond to more than one isomorphism. Each node-
match leads to a number of isomorphisms equal to the number
of ways edges can be chosen between the signal nodes. Since
the distinction between isomorphisms arising from the same
node-match is not very interesting, we omit counting them and
instead focus on enumerating node-matches.

Similarly, when a template contains structures invariant un-
der some permutations, one set of signal nodes can give rise to
multiple node-matches, each corresponding to a permutation.
Thus, we also count the number of distinct sets of signal nodes.

VII. EXPERIMENTS

To test the efficacy of our filtering methods, we apply
the workflow described in Section IV to several datasets
created by Pacific Northwest National Laboratory (PNNL), the
Graphing Observables from Realistic Distributions In Activity
Networks (GORDIAN) team, and IvySys Technologies for the
MAA program. The PNNL and GORDIAN datasets consist
of multiple instances, each of which has its own template
and background, while the IvySys dataset only has a single
instance. The size of each instance can be found in Table 4.
Each instance is known to have one hidden signal embedded
in the background by its creator; however, there may also be
many naturally occurring signals. These natural signals may
overlap with the hidden signal or be completely disjoint.

In some cases, filtering solves the whole problem by finding
a single candidate for each template node (see Section VII-A).
Even in cases where there are multiple candidates, filtering
can still sometimes reduce the problem to the point that node-
matches can be directly enumerated (see Section VII-B).

However, there are cases where filtering fails to reduce the
problem to this point (see Section VII-C). And, when the
template is disconnected, we can have varying results for each
connected component in the template (see Section VII-D).

A. GORDIAN Version 4 Probabilistic

Many of the template nodes in each instance of this dataset
have much higher degrees in at least one channel than the
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Dataset Instance
Template Background

Channels CommentsNodes Edges Distinct edges Nodes Edges Distinct edges

PNNL
Version 4

10k

B0 75 857 780 22,154 480,242 466,667

6 Ignored
self-edges

B4 75 896 818 22,059 488,549 475,220
B5 88 1,099 900 22,260 545,773 530,199
B8 88 1,135 929 21,974 445,130 433,499

GORDIAN
Version 4

Probabilistic

5k 25 21,261 151 5,003 4,755,911 1,113,816
5

Template only
uses 3 of the 5

channels
10k 39 61,803 453 10,003 25,380,079 6,012,215
35k 39 47,644 424 35,003 39,674,679 10,029,209

GORDIAN
Version 4

Agent-Based

5M 43 652,544 38 19,338 11,237,548 39,987
2 Template

is disconnected10M 48 521,312 41 31,215 20,201,977 72,339
35M 43 664,047 34 76,625 75,289,654 230,808

IvySys
Version 4 91 194 127 4875 9,584,969 45,366 3

Table 4: Overview of the size of each dataset considered. The edges columns count each parallel edge separately, whereas the
distinct edges columns count all edges with the same source and destination as one. For example, the template in Figure 1 has
four edges, but only two distinct edges.

non-signal nodes in the background. In the 35k instance, there
are 25 such nodes out of the 39 nodes in the template. After
running the node-level statistics filter to convergence, those
25 template nodes have fewer than 20 candidates each. The
remaining template nodes have thousands of candidates as seen
in Figure 3.

Figure 3: Number of candidates per template node in GOR-
DIAN Version 4 Probabilistic 35k after repeatedly applying
the node-level statistics filter until convergence.

After applying the topology filter in addition to the node-
level statistics filter, one template node has three candidates,
while the rest have only a single candidate each as seen in
Figure 4. Upon inspection of the three candidates, two are
already the sole candidates of other template nodes. After
additionally running the repeated set filter, every template node
has a single candidate corresponding exactly to the nodes of
the hidden signal. The same result holds for the 5k and 10k
instances.

Figure 4: Number of candidates per template node in GOR-
DIAN Version 4 Probabilistic 35k after repeatedly applying the
node-level statistics and topology filters until convergence.

B. PNNL Version 4 10k

For the PNNL Version 4 10k dataset, filtering on node-
level statistics and topology proves useful in eliminating
background nodes and narrowing down candidates for the
template nodes. The resulting candidate counts for the B0
instance are shown in Figure 5. Upon inspection, six of the
template nodes share the same six candidates, and several of
the other template nodes with six or eight candidates also share
these six candidates. By additionally applying the repeated set
filter, which specifically targets such situations, we see the
improvements shown in Figure 6.

At this point, since there are so few template nodes with
more than one candidate, we can identify all possible node-
matches. We count 57,139,200 node-matches for the B0
instance using the approach discussed in Section VI. Note
that several template nodes are structurally equivalent, which
causes the number of node-matches to skyrocket. However,
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Figure 5: Number of candidates per template node in PNNL
Version 4 10k B0 after repeatedly applying the node-level
statistics and topology filters until convergence.

Figure 6: Number of candidates per template node in PNNL
Version 4 10k B0 after repeatedly applying the node-level
statistics, topology, and repeated set filters until convergence.

these node-matches correspond to only 39,368 distinct sets of
signal nodes, which share 71 of their 75 nodes. These results
are summarized for B0 and other instances in Table 5.

C. IvySys Version 4

Due to the sparsity of the template in this dataset, and the
lack of any easily identifiable nodes, the filters are unable
to narrow down the candidates to find the hidden signal. As
shown in Figure 7, the nodes with the fewest candidates have
45, 62, and 115 candidates after applying all of the filters.
It’s possible that there are many naturally occurring signals,
which could be causing the observed abundance of candidates
for each node.

D. GORDIAN Version 4 Agent-Based

This dataset consists of three instances. Each instance has a
template with 10 or 11 connected components, and a different

Instance Node-matches Signal node
sets

Signal
nodes

Essential
signal nodes

B0 57,139,200 39,368 446 71 of 75
B4 9,617,097,600 6,579,768 221 67 of 75
B5 19,801,877,760 2,289,808 661 79 of 88
B8 22,029,096,960 4,751,162 639 85 of 88

Table 5: Summary of results for the B0, B4, B5, and B8
instances from PNNL Version 4 10k. The discrepancy between
the number of Node-matches and Signal node sets comes from
signal node sets that can be matched to the template in multiple
ways. Essential signal nodes are nodes that participate in every
signal.

Figure 7: Number of candidates per template node in IvySys
Version 4 after repeatedly applying the node-level statistics,
topology, and repeated set filters until convergence.

size background network. After running all of the filters
until convergence on the 35M instance, all but two of the
connected components consist of nodes which have a single
candidate each. In other words, their corresponding hidden
signal nodes have been found exactly. The remaining two
connected components have many more candidates, as seen in
Figure 8. The smaller connected component’s node-matches
can easily be enumerated, since there are only two template
nodes participating in that component. However, we were
unable to enumerate the node-matches of the largest connected
component, as each of its template nodes has over 2,000
candidates. Similar results were found for the 10M and 5M
instances.

Counterintuitively, it appears at first from Figure 8 that a
structure as simple as a pair of nodes has fewer node-matches
than the largest, most complicated structure. However, closer
inspection of the template reveals that each of these simple
pairs in the template is actually connected by many edges,
not just one. This illustrates the importance of parallel edges;
without them, these structures would be undetectable.
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Figure 8: Number of candidates per template node in GORDIAN Version 4 agent-based 35M after repeatedly applying the
node-level statistics, topology, and repeated set filters until convergence.

VIII. CONCLUSION

We propose effective filtering methods for finding signals
isomorphic to a template inside of a large multiplex network
by reducing the search space based on local statistics and
topology to the point where less scalable counting methods
can be applied. We test our methods on datasets created by
PNNL, GORDIAN, and IvySys for the MAA program. Our
methods find a unique signal in each of the GORDIAN Version
4 Probabilistic instances, and find many signals in each of the
PNNL Version 4 10k instances. They do not find the signal(s)
in the IvySys Version 4 dataset, indicating the need for a more
restrictive approach.

In the future, we plan to extend the filter to the noisy case,
where the background is not fully observed. In this case, the
observed background may not contain an exact match of the
template, since some edges of a hidden signal may not be
observed. This will require us to relax the requirements of our
filter, and search for subgraphs of the background most likely

to be a signal.
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